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Abstract
Perceptual grouping is the process by which the visual system organizes the
image into distinct objects or clusters. Here we briefly describe a Bayesian
approach to grouping, formulating it as an inverse probability problem
in which the goal is to estimate the organization that best explains the
observed set of visual elements. We pose the problem as an instance of
mixture modeling, in which the image configuration is assumed to have
been generated by a set of distinct data-generating components or sources
(“objects”), whose locations and structure we seek to estimate. We illustrate
the approach with three classes of source models: dot clusters, contours, and
axial shapes. We show how this approach to the problem unifies and gives
natural accounts of a number of perceptual grouping problems, including
contour integration, shape representation, and figure/ground estimation.

Highlight: A novel framework for perceptual grouping uses Bayesian mixture
estimation to provide a unifying account of grouping problems, including contour
integration, shape representation, and figure-ground estimation.

Keywords: perceptual organization; Bayesian inference; mixture estimation; dot
clusters; contours; shape skeleton

A Bayesian approach to perceptual grouping

Perceptual grouping is the process by which the visual system organizes the image
into distinct clusters or units. The grouping problem is inherently ambiguous, in that the
system must select among an enormous number of potential grouping interpretations (e.g.,
the number of partitions of N items is exponential in N). The situation is ripe for Bayesian

We are grateful to Seha Kim, Sung-Ho Kim, and John Wilder for stimulating discussions. Please direct
correspondence to Jacob Feldman, Department of Psychology, Center for Cognitive Science, Rutgers University
- New Brunswick, 152 Frelinghuysen Rd., Piscataway, NJ 08854, or by e-mail at jacob@ruccs.rutgers.edu.



BAYESIAN PERCEPTUAL GROUPING 2

inference, which is a uniquely rational method for interpreting data under conditions of
uncertainty.1 In a Bayesian framework, one assumes that the data (here, the image) are
consistent with a variety of hypothetical causes (here, scene models). The fit of each model
to the data is expressed by the likelihood, the probability of the image conditioned on
each model, and the inherent plausibility of each hypothesis (scene model) is expressed
by its prior probability.2 In the Bayesian framework, a rational observer should believe
each model (or, in the continuous case, parameter value) in proportion to its probability
conditioned on the data (its posterior probability). Bayes’ rule says that the posterior of a
particular interpretation is proportional to the product of its prior and likelihood, a simple
but profound observation that powers the Bayesian machine.

In the last two decades, Bayesian inference has been applied to a wide array of prob-
lems in visual perception (see Knill & Richards, 1996; Kersten, Mamassian, & Yuille, 2004
for overviews). Most applications have involved estimating an “objective” (independently
measurable) physical characteristic of the scene, such as depth (Jacobs, 1999; Knill, 2003),
color (Brainard et al., 2006), or motion (Weiss, Simoncelli, & Adelson, 2002). Perceptual
grouping differs from these problems in that the scene characteristic that we wish to esti-
mate, the assignment of visual elements to distinct groups or units, is not an independently
measurable property of the world per se, but instead is an organizational framework im-
posed upon the elements in the image. That is, while perceptual grouping sometimes
involves estimating literal physical bonds, like rigid attachment, it can and often does
involves more abstract notions such as “perceptual unit,” which entail more abstract types
of commonality (such as common origins). Such inferences in turn reflect mental models
of how objects tend to be created, and need not be verifiable by any directly measurable
physical property. As an example, if a large number of pebbles are laid out in a rectangular
array (say with an aspect ratio of 2:1), there is no “fact of the matter” regarding whether
they “really” lie in rows or columns in the physical world. Rather, the organization into
rows or columns is a perceptual construct based on the assumptions that the visual system
makes about its environment.3 Nonetheless, the basic logic of Bayesian inference applies:
given generative models of groups, which allow likelihood functions to be specified, and
suitable priors to accompany them, we can apply Bayes’ rule to attach a posterior belief to
each way that the visual elements can be grouped.

This brief paper gives a synopsis of a principled, conceptually simple, and internally
coherent Bayesian approach to the perceptual grouping problem. We sketch the mathe-
matics very briefly, aiming primarily to show how the approach unifies the treatment of a

1More precisely, Bayesian inference is the provably unique way to assign beliefs in an internally consistent
manner (Cox, 1961; Jaynes, 2003), and when coupled with a loss function (forming Bayesian decision theory)
is the provably unique rational way to select actions (Savage, 1954; Maloney, 2002).

2Note that this includes the case where the set of models forms a continuously parameterized family, in
which case each value of the parameters constitutes a distinct model, with its own prior and likelihood. In
this case the distribution of posterior probability over models (parameter values) forms is called the posterior
distribution or posterior density function.

3Examples such as these highlight the fact that the correspondence between the objective world and
perceptual representations can be arbitrarily complex—far from the homomorphism that is often assumed.
Perceptual representations are tuned by evolution to optimize not veridicality or similarity to the objective
world per se, but rather the fitness consequences of the actions that these representations support. These
two constraints are different and can lead to very different predictions (see Mark, Marion, & Hoffman, 2010;
Koenderink, 2011; Hoffman & Singh, 2012; Feldman, 2013; Singh & Hoffman, 2013).
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number of standard problems in perceptual organization, including dot grouping, contour
integration, figure/ground assignment, and shape representation. We explicitly distin-
guish competence (theory of the computation) from performance (algorithmic) aspects of
the problem, briefly sketching an approach to the latter that allows the computation to be
embedded in a network formalism.

Mixtures

We begin by making an analogy between the grouping problem and the problem of
estimating a mixture. A mixture density (or simply mixture) is a probability density function
that is composed of a weighted sum of K component distributions or sources,

p(x) =

K∑
i

pigi(x), (1)

where each gi is a distinct generative source, and pi denotes the probability with which the
i-th source is chosen. The components gi generally each have distinct parameters θi, such
as (in the case of Gaussian components) means µi and standard deviations σi. Individual
mixture components are often assumed to have a simple unimodal form (e.g. Gaussian),
but because the various components have distinct parameters (including locations), the
resulting mixture can be highly multimodal and irregular in structure. The problem of
mixtures is how to interpret a complex and hetereogeneous dataset as the result of a
combination of simple, internally homogeneous components (see McLachlan & Basford,
1988). More specifically, the problem faced by the observer is to estimate the mixture,
meaning to estimate the parameters of the component sources based on a sample of data
drawn from the mixture. Estimating a mixture is a difficult problem in part because the
observer generally does not know which datum came from which source, but instead must
guess, while simultaneously estimating the parameters of the sources. Naturally these
two problems interact, as the assignment of data to sources influences the estimate of the
parameters of the sources, and vice versa. Mixtures are a natural way of modeling situations
that involve a set of distinct data-generating processes that have been intermingled—such
as perceptual grouping, where the observed configuration might comprise data drawn
from a variety of distinct sources, such as contours, surfaces, and objects. Solving a
mixture estimation problem entails partitioning the data into distinct sources—just like
perceptual grouping.

We assume that the data consist of a set X = {x1 . . . xN} of points drawn from a
dataspace X. It is convenient to think of each datum xi as having a missing or hidden
label zi representing its source. A solution to the problem consists of an estimate Ŷ =
{(p1, θ1) . . . (pK̂, θK̂)} of the weights and parameters of the mixture components (generally
with K � N) along with an estimate Ẑ = {ẑ1 . . . ẑN} of the latent source labels for each
datum.

In a Bayesian formulation (Stephens, 2000), each of the parameters to be estimated
would have a prior density, which taken together determine the prior p(Y) on a given
mixture model Y. For example, one might have a prior that favors few mixture components,
or favors narrow standard deviations on mixture components, and so forth.4 The fit of

4Adopting a particular prior means making an assumption about probable structure of the environment.
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a particular mixture model Y to the data X is expressed by the likelihood p(X|Y), which
quantifies how well the observed data can be explained by the given model. By Bayes’ rule,
the posterior probability p(Y|X) of a particular mixture model is then proportional to the
product of the prior and likelihood for that model p(Y)p(X|Y). A substantial body of theory
is devoted to the problem of determining or approximating this posterior (see Stephens,
2000), which often cannot be determined analytically even if the distributional form of the
sources is known.

Grouping as a mixture estimation problem

Perceptual grouping can be thought of as an unusually elaborate and geometrically
complex mixture estimation problem. The data consists of the ensemble of visual elements
present in the image, e.g. points or edges. The mixture components are probabilistic
processes that generate visual elements in the image—that is, “objects,” or projections
of objects—with parameters that govern the spatial patterns by which those elements
tend to be distributed. More precisely, we assume that the data have been generated by
a mixture of K data sources g1 . . . gK (objects), each of which generates visual elements
with some probability distribution over 2D space.5 The goal of the observer is then to
estimate the parameters of the mixture components, while (as in any mixture estimation
problem) simultaneously estimating which data (visual elements) were generated by which
component. (In what follows, we assume for simplicity that each element has exactly one
source, but the mixture framework can be extended to encompass “mixed ownership” with
probabilistic weighting.) The assignment of visual elements to sources—inferring which
elements were generated by which source—is, by this definition, perceptual grouping.

Mixture components in the grouping problem

The first step in realizing this program is to define classes of data-generating pro-
cesses. Many such classes may be imagined, given the infinite variety of visual patterns
that may exist in nature. Here we briefly discuss three simple and well-studied types: clus-
ters, contours, and axial shapes. While certainly not exhaustive, these three types reflect
a very fundamental classification into respectively location-based, orientation-based, and
hierarchically organized generative processes.

Dot clusters

A very basic type of visual pattern, occasionally encountered in nature (e.g. flocks of
birds) but especially important as an object of study (e.g. Cohen, Singh, & Maloney, 2008;
Juni, Singh, & Maloney, 2010), are simple clusters of isotropic elements (e.g. points or dots)
(Fig. 1a). For simplicity, we assume that each cluster is generated by a circular Gaussian
process with a spatial mean µx,y and standard deviation σ. If the K means are all chosen

However, exactly what is entailed by the adoption of a particular prior depends on exactly what is meant
by “probability,” which is notoriously controversial. In a nutshell, to some theorists (frequentists), priors
correspond to factual assumptions about the environment, while to others (subjectivists, including most
Bayesians), a prior merely characterizes the observer’s state of knowledge, and thus does not amount to an
affirmative claim about the actual properties of the environment. See Feldman (2013) for discussion.

5More comprehensively, we might assume the gi generate visual elements in 3D space, which is then
projected down to 2D, but we defer the subtleties appropriate for this generalization to a future paper.
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independently, and the separation between the sources (inter-mean distance divided by
component standard deviation) is sufficiently large, the resulting mixture looks like a set
of distinct clouds of visual elements. Such a process is a simple model of any situation
in which data is generated in spatial proximity to a localized source, so that more closely
spaced data are more likely to have a common source.

The probability that a point x should be classified as having been generated by g1
rather than by g2 is given by the posterior ratio p(g1|x)/p(g2|x). Assuming Gaussian sources
g1 and g2 with equal priors and equal variances σ2,

p(x|gi) ∼ N(µi, σ
2), (2)

the posterior ratio can easily be seen to decay exponentially as x ranges from near g1 to
near g2,

p(x|g1)
p(x|g2)

= exp
[
−

1
σ2 d +

1
2σ2

]
, (3)

where d = ‖x − µ1‖/‖µ1 − µ2‖ is the distance between x and the first component relative
to the distance between the two components (Fig. 2). Indeed, a simple exponential decay
in grouping strength was discovered empirically by Kubovy and Wagemans (1995) and
Kubovy, Holcombe, and Wagemans (1998), who called it the “pure distance law.” Eq. 3
gives a Bayesian rationale for this law, demonstrating its optimality under the assumed
conditions. Thus the Bayes optimal strategy for estimating Gaussian mixtures actually
entails—and, we would argue, explains—the Gestalt principle of proximity. The broader
connection between Gestalt laws and Bayesian inference will be discussed below.

Contours

A contour is a set of oriented visual elements that form a “smooth” trajectory through
visual space. The Gestaltists referred to the tendency towards collinearity as “good contin-
uation,” a vague term that has since been formalized in a variety of ways (e.g. Uttal, 1973;
Zucker, 1985; Smits, Vos, & van Oeffelen, 1985; Field, Hayes, & Hess, 1993; Pizlo, Salach-
Goyska, & Rosenfeld, 1997). To formalize contours as a probabilistic generating process, we
imagine a smooth contour that stochastically generates discrete visual elements at random
intervals along its arclength. We assume that inter-sample distances d are drawn from a
normal distribution, p(d) ∝ N(d0, σ2

d), and samples each have an orientation drawn from
the local contour tangent plus a random orientation error (Fig. 1b). Because the generating
contour has some local curvature κ, successive tangent samples will differ by an angle with
expectation approximately κd. Assuming that turns in clockwise and counterclockwise
directions are equally probable (corresponding to the assumption of an open contour; see
Feldman & Singh, 2005), and that perturbations have mean 0◦, the resulting angle between
successive samples, called the turning angle and usually denoted α, will have expectation 0◦

and angular variance σ2. We assume that this net turning angle has a von Mises distribution
centered on 0◦,

p(α) ∝ eβ cosα. (4)
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Figure 1. Schematic illustrations of the three generating source models discussed in the text: (a)
dot clusters (b) contours and (c) axial shapes. Distinct colors indicate distinct mixture sources.
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Figure 2. The Bayesian rationale for the “pure distance law” of Kubovy & Wagemans (1995) For
any dot x between the two clusters g1 and g2 (with means respectively µ1 and µ2), the evidence
that x belongs to g1 rather than g2 depends on the likelihood ratio p(x|g1)/p(x|g2) (the ratio of the
red curve to the blue curve). If p(x|g1) and p(x|g2) are both Gaussian (normal), then the ratio decays
exponentially as x moves from µ1 to µ2.

(Eq. 3).

(see Feldman, 1995, 1997, 2001; Feldman & Singh, 2005; Singh & Feldman, 2012). The
von Mises is the analog of a normal distribution suitable for angular measurements, with
parameter β acting approximately like 1/σ2 (see Mardia, 1972).

This simple model yields a sequence of approximately equal-spaced and approxi-
mately collinear visual elements, with von Mises distributed inter-element turning angles.
The elements technically form a Markov chain, because successive turning angles (changes
in orientation) will be independent, meaning that non-adjacent orientations will be inde-
pendent conditioned on the intervening orientations. (That is, each sample’s orientation
is independent of non-adjacent samples except via dependencies conveyed by interven-
ing samples). A simple extension of this model is to assume that non-successive turning
angles are positively correlated rather than independent, which introduces a bias towards
cocircularity in addition the bias towards collinearity, for which there is ample evidence
(Singh & Fulvio, 2005, 2007; see also Singh & Feldman, 2012).

Given this contour-generating process, the mixture estimation problem consists of es-
timating the sources of the N edges: as a single smooth chain of N edges, two distinct chains
each containing a subset, or any other partition conveyed by a set Ẑ of estimated source
labels (Fig. 3b). The prior inherently favors fewer components, because each additional
contour gi entails additional parameters θi, whose probabilities p(θ), when multiplied
by the priors on other parameter, inevitably decrease the overall prior. The likelihood
inevitably favors more components, and is maximized when each contour (perfectly) ex-
plains just one edge. Each grouping interpretation Y has a posterior proportional to the
product of its prior and likelihood, which may be maximized at some intermediate num-
ber of components. A similar model was tested in Feldman (2001), in which subjects were
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asked to group sets of dots into some number of distinct smooth contours, e.g. grouping all
of them into one smooth contour, or breaking them into two or more. In those studies, to a
high degree of precision, each interpretation was chosen with a probability approximately
proportional to its posterior.

Axial shapes

Finally, a more structurally complex class of visual patterns consists of complete
closed shapes bounded by smooth contours. There are an infinite number of ways in which
the shape of such objects might be parameterized, each potentially leading to a distinct
probabilistic generative model. Many authors have argued that many natural shapes
can be understood as combinations of distinct parts centered on elongated axes (Blum,
1973; Marr & Nishihara, 1978; Biederman, 1987), and the resulting axial representation
has known neural correlates (Lee, Mumford, Romero, & Lamme, 1998; Hung, Carlson, &
Connor, 2012; Lescroart & Biederman, 2012). Putting this in a Bayesian context, Feldman
and Singh (2006) proposed that shape boundaries can be understood as data generated
stochastically from a skeletal or axial model (see Feldman et al., 2013). In this framework,
axes are generated via a smooth curve process similar to that described for contours above,
with a von Mises distribution of turning angle along each axis. Additional axes branch out
from other axes in random directions, each being born with some constant probability pC,
resulting in a potentially complex, hierarchically organized skeletal structure (Fig. 1c). From
this skeleton, random deviates (called ribs) sprout laterally from both sides, extending a
distance that is normally distributed about a continuously varying mean, in a direction that
is perpendicular on either side plus a von Mises distributed directional error. The endpoints
of the ribs form a two-dimensional shape surrounding the original skeletal structure,
which constitutes the data available to the observer. The resulting contours tend to form
articulated shapes consisting of a set of interconnected axial parts. In this framework, each
individual shape is a sample from an axially structured mixture component, and an image
containing several shapes is a mixture of samples drawn from several distinct components.
That is, just as an image is a mixture of objects, each object is a mixture of parts. (For
example, Fig. 1c shows a configuration decomposed into two objects, one of which has
multiple parts.) Grouping an image thus entails both decomposing it into objects and
decomposing the objects into parts.

Feldman and Singh (2006) present many more details about shape representation and
skeleton estimation in this framework, including an account of how the recovered axial
structure leads to a breakdown of the shape into intuitive parts (Singh, Froyen, & Feldman,
2014). Natural classes of shapes, such as animals and leaves, have distinguishable skeletal
parameters (Wilder, Feldman, & Singh, 2011), leading to specialized formulations of the
prior model. In the current paper we restrict our attention to the generic model sketched
above, focusing on the role such a generative model might play in a broader account of
perceptual grouping.

The three generative classes given above—clusters, contours, and axial shapes—
constitute a set of assumptions about the generative processes at work in the environment.
Beyond these three one can imagine a nearly infinitely diverse set of more complex mod-
els suited to particular environments. Generally, alternative assumptions would lead to
alternative computational mechanisms. To Bayesians, inferential procedures inevitably re-
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flect contingent knowledge and assumptions (they are “tuned” to the world; see Feldman,
2013), rather than supposedly a priori or domain-independent laws (as Gestalt principles
were sometimes argued to be). It should be borne in mind that the explicitness of the link
between the assumptions we have made and the computational procedures they entail
is—at least to Bayesians—a feature, not a bug.

The Bayesian grouping interpretation

With a set of data-generating source classes at hand, we can now give a Bayesian
statement of the grouping problem. Given a set X = {x1, . . . xN} of image elements, the de-
gree of belief in a particular set of hypothesized generating sources Y = {(p1, g1) . . . (pK, gK)}
is given by the posterior probability

p(Y|X) =
p(X|Y)p(Y)

p(X)
(5)

∝ p(X|Y)p(Y)

For fixed image data X, the posterior distribution p(Y|X) assigns a probability to each
possible grouping interpretation Y, proportional to the product of its prior probability p(Y)
and its likelihood (fit to the data) p(X|Y). Generally interpretations with more sources (larger
K) will have higher likelihood, because they allow the parameters of each source to be fit
more closely to a (smaller) subset of the image data. In the limit a solution with K = n, in
which each datum is interpreted as the product of its own individual source, will maximize
the likelihood. But this tendency will be counterbalanced by any reasonable prior, because
the prior p(Y) is the product of the priors of the parameters of all the component sources,
and hence generally diminishes with larger numbers of components. That is, the prior
automatically favors fewer sources, while the likelihood favors more; the posterior, which
is their product, favors interpretations that balance complexity with fit to the data (Jeffreys,
1939/1961; MacKay, 2003). Fig. 3 gives schematic examples of this tradeoff for the three
source classes.

In perception, it is often assumed that the observer draws a single, unique interpre-
tation (the “percept”). If we wish to restrict attention to one interpretation, a natural choice
is the maximum a posteriori (MAP) interpretation,

YMAP = arg max
Y

p(Y|X) (6)

which maximizes the product of the prior and likelihood. Still, it should be kept in
mind that the MAP is at best an imperfect substitute for the full posterior distribution,
which includes posterior probabilities for all interpretations, and its use discards potentially
useful information. In many contexts in perception, such as any involving multistability
or competing interpretations, one might want to sample from the posterior distribution
rather than maximizing it (Moreno-Bote, Knill, & Pouget, 2011), which requires that the
full posterior distribution (or an approximation thereof) be retained.
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Figure 3. Schematic illustration of the range of possible mixture estimates for each of the three
source classes. On the left, the estimated mixture has only a single component, which has high prior
but concomitantly fits the image data poorly (low likelihood). On the right, the mixture has many
components, which has lower prior but concomitantly fits the image data well (high likelihood). In
the middle, the product of the prior and likelihood is maximal (maximizing the posterior), yielding
a more intuitive mixture with a psychologically reasonable number of components.

Description-length formulation

Shannon (1948) showed that any set of messages can be encoded with maximum
efficiency (that is, minimum expected code length) if each message is assigned a code
whose length is proportional to the negative logarithm of that message’s probability. As
a result the quantity − log p is often referred to as the description length (DL—although it
should be kept in mind that the DL is only in fact the length of the description if the code is
optimal). As perhaps first noticed by Rissanen (1978), it follows that the MAP interpretation
of a dataset is also the interpretation with minimum DL (because the maximum posterior is
also the minimum negative log posterior). In our setting, the MAP grouping interpretation
YMAP is also the minimum DL interpretation, because its DL

DL(YMAP|X) = DL(X|YMAP) + DL(YMAP) + constant (7)

is smaller than the DLs of all other interpretations. (The constant,− log p(X), is independent
of Y.) In this sense, the most likely grouping interpretation of the image I, given the assumed
ensemble of potential generative sources, is also the simplest (minimum DL) interpretation.

This mathematically straightforward observation provides a rational basis for the
idea that the best perceptual interpretation is also the simplest (although again it should
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be kept in mind that the connection depends on the assumption of an optimal code, a
condition that can never be confirmed in practice). The idea that perception favors the sim-
plest interpretation has a long history, ranging from the original Gestalt idea of Prägnanz
(Kanizsa, 1979; Koffka, 1935) to a range of more concrete complexity measurement pro-
cedures (Attneave & Frost, 1969; Hochberg & McAlister, 1953; Leeuwenberg, 1971). His-
torically, simplicity principles have often been contrasted with those based on probability
maximization (Hatfield & Epstein, 1985; van der Helm, 2000). But as argued by Chater
(1996), the current formulation suggests that the two principles are intimately connected
or even identical (see Feldman, 2009).

The estimated number of objects

A simple but important application of this model concerns the estimation of the
number of components K̂, that is, the number of “groups” or objects apparently present
in the visual field. The estimate K̂ may reflect the marginal posterior distribution of K,
p(K|X), which gives the probability distribution over K given observed image X (that is, the
posterior probability of each value K after observing X). The mean or expectation of this
distribution is simply

E(K̂) =

∫
Y

KYp(Y|X)dY, (8)

where KY = |Y| denotes the number of components in the interpretation Y. That is, the
estimated number of components (or, more strictly, the average estimate over all interpre-
tations) would be the number of components in each possible interpretation Y weighted by
the posterior probability of that interpretation p(Y|X). This is a probabilistically-weighted
average of many integer-valued estimates, and thus need not itself be an integer. Alterna-
tively, as discussed above, if we reduce the full posterior to the MAP, then the estimated
number of components is simply the (integer) number of components in this interpreta-
tion, KYMAP = |YMAP|. Note that the full posterior distribution of K retains information not
present in this single estimate, such as the degree of belief in the most likely estimate, which
may be far less than certainty in ambiguous cases. For example, in an array containing a
number of imperfectly separable, overlapping groups, in which the true number of distinct
groups is unclear to observers, the full posterior p(K|X) allows predictions about the relative
probability of various numerical estimates.

The close connection between numerical estimation and perceptual grouping has
been well established (Compton & Logan, 1993; van Oeffelen & Vos, 1982). Indeed, any
assessment of the number of “units” present in the scene rests on some decomposition of
the image into perceived objects (Feldman, 2003), and in this sense perceptual grouping
inherently underlies the determination of visual numerosity (Juni et al., 2010) as well as
perception of the properties of multi-part objects (Cohen et al., 2008). The mathematical
connection given above simply expresses this connection formally, showing how intuitions
about visual number can be related to a rational estimate of the number of groups.

Towards a performance theory

In this paper we have focused on the theory of the computation, Marr’s (1982) term for
an account that is abstracted away from details of the algorithm and implementation (also
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called the competence theory after a similar idea due to Chomsky). To build a comprehensive
account it is essential to consider performance as well, that is, to describe a computational
mechanism that approximates the competence within the constraints of available neural
hardware. Froyen (2013) describes a tractable algorithmic framework that computes a
hierarchically organized mixture estimate along the lines described above. Here we give
a few remarks about how the grouping mixture posterior might be estimated in a parallel
computational architecture consisting of a collection of nodes that (i) each receive evidence
from a restricted neighborhood of the image, and (ii) communicate with only a limited set
of neighboring nodes.

First, notice that computation of the likelihood in the Bayesian account is substantially
local in nature. That is, imagine we divide the image into a set of (possibly overlapping)
neighborhoods {X1,X2, . . .}, that is, subsets of the image data (X j ⊆ X) whose union is the
full image (X = ∪ jXi). Each of these neighborhoods can be explained by a local generative
model Y j with local likelihood function p(X j|Y j). Because of the nature of the global
generative model described above, these likelihoods will be approximately independent,
meaning that the global likelihood function p(X|Y) can be approximated by the product of
the local likelihoods

∏
j p(X j|Y j); or, equivalently, the global log likelihood is approximately

the sum of the local log likelihoods, log p(X|Y) ≈
∑

j log p(X j|Y j). This suggests a neural-
like arrangement in which nodes integrate local evidence within their “receptive fields” in
favor of a particular grouping interpretation (cf. Doya, Ishii, Pouget, & Rao, 2007; Sotani
& Wang, 2010; Yang & Shadlen, 2007), which can then propagate to neighboring nodes in
a fashion organized so as to approximate the Bayesian posterior.

We illustrate this idea by showing how it can be used to give an estimate of figure and
ground, a solution to which is implied by the mixture conceptualization. In the mixture
model, the winning mixture estimate entails an interpretation of the ownership of each image
element, that is, the generative source interpreted as most likely to have generated it. In our
context, this in turn determines perceived figure/ground (border ownership), because the
generative model assumes that shapes are generated “from the inside.” That is, the figural
status of each image element is interpreted so that the side with the winning skeleton is
the interior of the shape. Hence a parallel estimate of the maximum posterior mixture
ownership labels Ẑ associated with fixed mixture model Ŷ constitutes an interpretation of
border ownership (figure/ground status) for all the contours present in the image. Note that
when skeletons lose these competitions, their “explanation pool” (the set of elements they
explain) is reduced, requiring re-estimation of the skeleton to better explain the remaining
elements. In the extreme, some skeletons—those that lie in what are perceived as ground
areas—lose all the competitions in which they are involved, in which case they effectively
“drop out” and play no role in explaining the image.

Froyen, Feldman, and Singh (2010) demonstrated an implementation of this ap-
proach, in which the border ownership estimate was computed using units that commu-
nicate locally via Bayesian belief propagation (Pearl, 1988; more specifically see Weiss,
1999). This approach necessarily implies a network that includes both contour nodes,
which represent local border ownership, as well as axial nodes, which represent own-
ership of contours by skeletons, both classes that have intriguing neural analogs (Craft,
Schutze, Niebur, & von der Heydt, 2007). Fig. 4 shows some results of our implementa-
tion, showing figure/ground estimates drawn from a mixture-of-skeletons description for
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Figure 4. Figure/ground estimates (arrows point towards perceived interior of shape) from net-
work model (Froyen et al., 2010). In the model, which implements part of the performance model
described in the text, border ownership esimates spread by Bayesian belief propagation over net-
works of skeleton nodes. (a) simple closed shape (b) shape with deep indentation showing f/g
reversal (c) overlapping shapes (d) non-overlapping shapes.

several critical shape configurations. In each case, the border ownership estimate derived
from the local skeletal posteriors corresponds to the perceived figural status point on each
contour (indicated by inward-pointing arrows in the figure). These results are suggestive
of the wide scope of problems in perceptual organization that can be simultaneously solved
in a Bayesian framework once the decision problem (here, mixture estimates with entailed
border ownership) has been suitably posed.

Discussion and conclusion

The Gestalt psychologists proposed a wide range of principles to describe human
perceptual organization: depending on the author, as many as 114 (see Pomerantz, 1986) or
as few as one (the unifying but vague Gestalt principle Prägnanz). The Bayesian approach
to grouping replaces the heterogeneous “bag of tricks” exemplified by 114 separate rules—
not to mention the hundreds of putatively distinct rules that have been proposed in the
literature since—with a single unifying principle, Bayes’ rule. Broadly speaking, we would
argue that Bayesian mixture estimation can be seen as a realization of the comprehensive
Gestalt principle Prägnanz. Viewed more carefully, the Bayesian approach is as diverse as
the generative models it assumes. Indeed, as mentioned above, several of these generative
models show obvious parallels with specific Gestalt rules. For example, the principle of
proximity—nearby items should be grouped together—is in effect a strategy for decom-
posing isotropic (e.g. Gaussian) mixture components; the principle of good continuation
is a strategy for decomposing smooth contour components; and so forth. The Bayesian
approach replaces a diversity of principles with a diversity of generative models—albeit
all united under a single unifying principle, Bayes’ rule. In this sense, each of these narrow
Gestalt rules can be seen as a heuristic that helps the system achieve the Bayes optimal
mixture estimate. Nevertheless our argument is that it only takes a handful of generative
models—each of which has a natural, intuitive interpretation such as contours, shapes,
etc.—to handle a wide range of pattern classes. Fundamentally, understanding perceptual
grouping in terms of mixture estimation helps clarify the formal justification for these
rules, and points the way towards more complete understanding of the computations that
underlie them.
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The Bayesian approach has several substantial advantages over the traditional ap-
proaches, including the Gestalt tradition. First, as just mentioned, it unifies many distinct
rules of grouping—which have sometimes seemed like a dizzying collection of unrelated
heuristic tendencies—under a common mathematical framework. The framework is inter-
nally coherent and motivated by well-defined goal: the attribution of belief in proportion
to the Bayesian posterior (or, more broadly, the selection of action by minimization of
a suitable loss function; Maloney & Zhang, 2010). Second, despite occasional criticism
that the Bayesian approaches can encompass virtually any inference mechanism, Bayesian
models can generate a wide range of quantitatively precise predictions from a relatively
small set of assumptions. Third, the rationality of Bayesian inference means that the in-
ferences drawn represent optimal use of the information and assumptions available to the
observer (Jeffreys, 1939/1961; Jaynes, 2003). This rationality gives the Bayesian approach
unique explanatory power, because in principle it can show how the particular perceptual
mechanisms it posits actually serve to further the goals of the organism.
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